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Note 

Contour Dynamics/Surgery on the Sphere 

1. INTRODUCTION 

This note derives remarkably simple equations governing the motion of an 
inviscid fluid of constant but negligible depth on the surface of a sphere and out- 
lines an associated numerical algorithm. The algorithm offers an alternative 
approach for investigating idealised geophysical flows. 

Inviscid, incompressible flow on a spherical surface and on an infinite plane share 
the property that the vorticity normal to the surface is conserved on fluid particles. 
Material conservation of vorticity implies that one may consider the simple 
piecewise-constant subclass of vorticity distributions for which the boundaries of 
vorticity discontinuity or contours alone determine the dynamics of the flow; in t 
planar case [l], the velocity at a point x is given by 

dx -= --&k~cklog ,x-xk,2dXk 
dt 

where xk is a point on the kth contour C, across which the vorticity jumps by &)k 
crossing the contour inwards. The inside of Ck is to the left of dx,. Equation (1) is 
true for all points x in the fluid, but when x lies on one of the contours, (1) forms a 
closed system for the evolution of the contours in terms of their instantaneous 
positions. Zabusky et al. [6] coined the term “contour dynamics” for this system. 
Perhaps surprisingly, it turns out (see below) that the same equation, appropriately 
interpreted, also governs inviscid flow on the sphere. 

Consider then the generalisation of (1) to the spherical case. Juckes [4] an 
more recently Kimura and Okamoto [S] have derived contour dynamical 
equations in terms of spherical coordinates, and Juckes has performed several 
short-time calculations with hemispheric symmetry. The first step is to invert 
Laplace’s equation V”+ = o to get the streamfunction $(O, 4) (0 being colatitude 
and 4 longitude) in terms of the vorticity distribution a($, #), and this involves 
finding the Green’s function G(B, 0; W, 4’) for the spherical Laplacian operator. It is 
a simple matter to show that 

G=&log(l-cos@) (21 

where cos 0 = cos 9 cos 13’ + sin 9 sin 8’ cos(4 - 4’) is simply the dot product of the 
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two position vectors x = (sin 8 cos 4, sin 8 sin 4, cos 0) and x’ = (sin 8’ cos @, 
sin 8’ sin 4’, cos 0’) on the unit sphere. The streamfunction is therefore given by 

w3, 4) = & JJ 04ef, 9’) i0g(i - cos 0) dd2’ 

where dQ’ = sin 8’ dt?’ dd’ is just the incremental area. 
The contour dynamical equations are obtained from (3) by assuming that the 

vorticity distribution is piecewise constant. Without loss of generality, consider a 
single vorticity interface across ,which the vorticity jumps by 6. The components of 
the velocity are given in terms of derivatives of the streamfunction as 

de 1 fw -- ~=&?= -sine @’ 

sinQ!!!=u =!.!!! 
dt 4 de' 

(4) 

Thus, from the first of these equations and (3), 

de I.2 
sin Oz= -& Ii 2 log( 1 - cos 0) sin 8’ de’ df a~ 

= +g [!” -$log(l - cos 0) sin B’ de’ d& 

= -E $ log( 1 - cos 0) sin 8' de’. 
C 

(5) 

The second line follows from the symmetry of G in its arguments 4 and @, and the 
third line follows from Stokes’ theorem. In the final expression, 8’ and 4’ are to be 
regarded as tracing out the contour C. 

A much simpler set of equations results if one works with Cartesian coordinates 
constrained to the unit sphere. With z = cos 8, (5) can be rewritten as 

dz - 
-=-f-j log(l-cosO)dz’. 
dt C 

Furthermore, notice that cos 0 = x . x’ and 1 - cos 0 = 3 Ix - x’ 1 ‘-G is symmetric 
in x and x’. It is this property of G that implies (6) is equally true for the other two 
coordinates x and y (z, z’ are replaced by x, x’ and y, y’). Hence, (1) describes 
motion on the plane when x is a two-dimensional vector and motion on the sphere 
when x is a three-dimensional vector. Apart from the dimensionality of x, indentical 
equations describe fluid motion on the plane and on the sphere. 
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FIG. 1. (a) A polar stereographic projection of vortex flow on the sphere (plotted is f = x/( 1 c z) 
j = y/( 1 + z) for the northern hemisphere (z > 0) only. Time increases across and downwards, Algorithm 
parameters (see [2]): At = 0.05, p = 0.04, and 6 = 10e4. (b) An enlarged view of the flow at t = 7.25. 
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2. AN EXAMPLE CALCULATION 

A single example is presented to demonstrate the feasibility and simplicity of per- 
forming spherical calculations. The “countour surgery” algorithm [2] devloped for 
planar flow was converted to the spherical case. Both algorithms feature surgery or 
the automatic removal of line-scale vorticity features, adaptive node adjustment for 
the nodes or points whose union make up a given contour, nonlinear interpolation 
of the curve between successive nodes, and an explicit calculation of the contour 
integral between each pair of nodes that is accurate to first order in the departure of 
the contour from a line segment between nodes. The only significant difference 
between the two algorithms arises from the curvature of the spherical surface: on 
the sphere, the curve between two nodes must follow the spherical surface and is 
necessarily curved. This and other minor differences are outlined in the Appendix. 

The example calculation begins with two nested contours centred on the north 
pole (z = 1). The vorticity jumps by n across each contour going inwards (toward 
the north pole). Initially, x= 0.7~~ COW, y =0.6a sin CC, and z =dM, 
0 da < 2~ (with a= 0.7938 and 1 for the inner and outer contours, respectively), 
modified by the fivefold perturbation 0.05~ cos 5a (see Figs. la and b). The waves 
on the outer contour proceed to steepen and break and continue breaking over the 
duration of the calculation, and long, thin filaments wrap around the vortex. This 
process of “lilamentation” also occurs in planar geometry; for details and com- 
parisons between planar and spherical geometry, see [3]. 

3. CONCLUSIONS 

It is now possible to efficiently perform numerical calculations of inviscid, incom- 
pressible, flow on the sphere for piecewise-constant vorticity distributions. The 
emphasis of present research lies on the differences between planar and spherical 
flow, in such problems as the form of equilibria, the stability of equilibria, vortex 
merger, and the “lilamantation” of vorticity interfaces. 

APPENDIX 

The contour surgery algorithm outlined in a previous paper [2] is virtually 
unchanged when applied to flow on a sphere. Below, the unobvious differences 
between the planar and spherical algorithm are discussed. 

Interpolation 

Each contour is approximated by a finite number of nodes and an associated set 
of interpolation coefficients. Between two nodes, say xi and xi+ i, the contour is’ 
assumed to take the form (see Fig. 2) 

X(P)=Xi+ Pti+V(P)ni+5(P)% (AlI 
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a 

FIG. 2. The interpolation between two nodes, i and i+ 1, along a contour C (dashed line) lying on 
the surface of a sphere. (a) An on-edge view looking in the direction of n,. The variation of C in the 
direction of fi is a parabolic arc 5 to leading order in the distance ei between the two nodes. (b) A view 
looking down on %,. The variation of C in the direction of n, is assumed to be a cubic polynomia! @,q 
whose variation is weak compared with e,. 

where ti= xi+ I -xi, ni= xix xi+ i, and gi= i(xi-t xifl) are mutually orthogonal 
vectors; q(p) = cr,p + pip2 + yip3, 0 < p < 1, describes the nonlinear variation of the 
contour in a plane perpendicular to tj; and t(p)= #p(l -p), e,= ItiI = In,/, is the 
new term arising from the curvature of the spherical surface itself, terms of 19(e4) 
being neglected. It is assumed that nodes are sufficiently close together that 7 % 
and 5 $ ei. 

The coefficients aj, pi, and yi are calculated in terms of the curvature rci at xi in a 
plane perpendicular to xi and the curvature at xi+, , ICY+ ,-these formulae may be 
found in [2]. For clarity, the expression for the curvature used is 

2Xi.(X, xx-) 
7ci = 

Ix+ e2 -x-e: / 

where x i =xii1 --x. 

Node Redistribution 

At each time step, all of the nodes are redistributed so as to put more nodes in 
regions of high curvature and fewer in regions of low curvature. This distribution 
actually depends on a nonlocal function of curvature which is sensitive not only to 
curvature but also to its rate of change. In the spherical algorithm, the total 
curvature ,,I(1 + Jcf )--the root mean square of the spherical curvature (unity) and 
the curvature orthogonal to the spherical surface-is used. Finally, in the planar 
case, it is necessary to define a length typical of the large scales, L; for the unit 
sphere, L is set to 1. 
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Velocity Field Determination 
The velocity field contributed by the segment between two nodes is explicitly 

evaluated to first order in the small departure of the contour from the cord 
separating the nodes. In the planar case, it was shown that this correction leads to a 
significant increase in the order of accuracy of the algorithm [2]. Similar benefits 
can be expected in the spherical case. 

The algorithm for calculating the velocity at a point x is virtually identical to the 
planar algorithm, aside from the dimensionality of the vectors. The differences are 
pointed out following the outline of the velocity algorithm, which follows next: 

(-43) 

where, supressing unessential subscripts, the following quantities are all evaluated 
at node i: 

T=l-BL-(l-B)L+-G21,+C[a1,+~I,+y1J+D[I,-I,], 

N=aJ,+/?J,+yJ,, 

S = ie’ [JI - J2], 

A = Ix-xi12/e2, 

B = t. (x - xi)/e2, 

C = n . (x - xi)/e2, 

D = 4% . (x - xi), 

G= Itx(x-xj)l/e2, 

L=log lx-xxi/, 

L, =log Ix--xi+1l, 

(A4) 

lo=; ( 1-B tan-l~+tan-l ___ 
G ) 

, 
ZI=L+-L+BZO, 

1 z, =- 
n-l 

+2BZ,-,-AZ,-,, n 2 2, 

J,,=Z,,+l-BL, n2 1. 

If the evaluation point happens to be close to the segment connecting xi and xi+ i, 
close in the sense that A - B < 0, then the procedure above is slightly modified: with 
h = r](B), h is subtracted from C, 2Ch - h2 is subtracted from A with the consequent 
changes to G, etc., and ChZ, is subtracted from T. 
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This algorithm is identical to the planar case if G is used in place of C and terms 
involving D and Xi are dropped. 

Surgery 
No significant differences arise other than the use of three-dimensional vectors in 

place of two-dimensional ones. 
Errors due to imperfect interpolation, imperfect evaluation of the velocity field, a 

finite time step, and surgery result in slightly displacing nodes off the sphere. When 
this occurs, points are adjusted in the direction of xi so that Ix,] = 1. 
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